A global root-finding method for high dimensional problems

نویسنده

  • Fabrizio Castellano
چکیده

A method to solve the problem f(x) = 0 efficiently on any n-dimensional domain Ω under very broad hypoteses is proposed. The position of the root of f , assumed unique, is found by computing the center of mass of an Ω-shaped object having a singular mass density. It is shown that although the mass of the object is infinite, the position of its center of mass can be computed exactly and corresponds to the solution of the problem. The exact analytical result is implemented numerically by means of an adaptive Monte Carlo sampling technique which provides an exponential rate of convergence. The method can be extended to functions with multiple roots, providing an efficient automated root finding algorithm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Quasi-Normal Direction (QND) Method: An Efficient Method for Finding the Pareto Frontier in Multi-Objective Optimization Problems

In managerial and economic applications, there appear problems in which the goal is to simultaneously optimize several criteria functions (CFs). However, since the CFs are in conflict with each other in such cases, there is not a feasible point available at which all CFs could be optimized simultaneously. Thus, in such cases, a set of points, referred to as 'non-dominate' points (NDPs), will be...

متن کامل

Elzaki transform method for finding solutions to two-dimensional elasticity problems in polar coordinates formulated using Airy stress functions

In this paper, the Elzaki transform method is used for solving two-dimensional (2D) elasticity problems in plane polar coordinates. Airy stress function was used to express the stress compatibility equation as a biharmonic equation. Elzaki transform was applied with respect to the radial coordinate to a modified form of the stress compatibility equation, and the biharmonic equation simplified t...

متن کامل

A development in the finite volume method for the crack growth analysis without global remeshing

Crack growth analysis has remained one of the challenging problems in the fracture mechanics of structures. On the other hand, the fatigue crack growth is a common phenomenon in the components of structures like airplanes, navies and fluid storages where the fracture due to crack should be considered in the design of these structures. In this paper, the finite volume method (FVM) is extended fo...

متن کامل

Robust high-dimensional semiparametric regression using optimized differencing method applied to the vitamin B2 production data

Background and purpose: By evolving science, knowledge, and technology, we deal with high-dimensional data in which the number of predictors may considerably exceed the sample size. The main problems with high-dimensional data are the estimation of the coefficients and interpretation. For high-dimension problems, classical methods are not reliable because of a large number of predictor variable...

متن کامل

Mammalian Eye Gene Expression Using Support Vector Regression to Evaluate a Strategy for Detecting Human Eye Disease

Background and purpose: Machine learning is a class of modern and strong tools that can solve many important problems that nowadays humans may be faced with. Support vector regression (SVR) is a way to build a regression model which is an incredible member of the machine learning family. SVR has been proven to be an effective tool in real-value function estimation. As a supervised-learning appr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009